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Strong Gravity and the Yukawa Field 
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A study of strong gravity field coupled to the Yukawa field is carded out for a 
conformally flat space-time. A quantitative relation between the strong interac- 
tion coupling constant g2/hc and the strong gravity constants ( A f ~ 1 0  28 
cm -2, G/~6 .6X 103~ C.G.S. units) is obtained giving g2/hc~17, which is of 
the right order of magnitude. This justifies the contention that strong gravity is 
relevant for elementary particles (e.g., hadrons). 

1. INTRODUCTION 

Following the suggestion of Schr6dinger (1944) that the charge inde- 
pendence of nuclear forces is analogous to the mass independence of 
gravitational interactions, some authors have attempted a unified geometri- 
cal theory involving both gravitational and scalar meson fields (Murphy, 
1977). However, one encounters serious difficulties concerning the strength 
of the strong (nuclear) interaction in this approach, although the field 
equations seem to have an acceptable form. 

In recent years the role of short-range strong tensor interaction 
mediated by massive spin-2 (2 +) bosons (so-called strong gravity) (Isham, 
Salam, and Strathdee, 1971) has been invoked in the study of hadron 
physics (Sivaram and Sinha, 1973, 1974, 1975, 1976, 1977, 1979; Lord, 
Sinha, and Sivaram, 1974). This was prompted by the experimental ob- 
servation of f mesons (JP =2 +) which constitute an SU(3) nonet and 
interact strongly with hadrons (Lord, Sivaram, and Sinha, 1974; Sinha and 
Sivaram, 1977). It is found that Einstein-type field equations for such 
massive spin-2 fields can be formulated. In this the so-called "cosmologi- 
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cal" term is related with the mass (ml) of the f meson by the relation 
A: =(m:c/h) 2= 10 28 cm -2. The corresponding field equations, being of 
Einstein type, constitute a gauge theory of strong spin-2 interaction. The 
presence of the A: term is equivalent to introducing a mass terra in the 
corresponding Lagrangian and in turn determines the range of strong 
gravity. Also it connects the strong gravity coupling constant (G:) with the 
hadronic density phi(1017 g cm-3). We get 

Ayc 2 
G/= ~ ,~ 1038GN 

GN being the Newtonian constant. One would get the same value for Gy by 
equating the Compton length of a hadron (say proton) with its "strong" 
Schwarzschild radius, giving (Sivaram and Sinha, 1979) 

Gf = hc /2 M~ ~ 1038GN 

This coupling constant is of the order of the strong interaction of nuclear 
forces. It is thus felt that a relationship should exist between strong gravity 
and Yukawa forces. In fact, the unification of scalar meson (Yukawa) 
fields with strong gravity fields is more natural as they operate within the 
same range (10-14 to 10-13 cm) than with the weak (Einstein-Newtonian) 
gravity (which has infinite range). 

In an earlier paper we had studied the problem of strong gravity field 
coupled to SO(3) gauge field in a conformally flat space (Usha and Sinha, 
1979). The solutions of the mass modified field equations of strong gravity 
gave the potential, which had the expected form aye-m:r/myr showing the 
mediation by a massive (my) boson. In the present paper, we investigate 
the problem of strong gravity coupled to scalar meson (Yukawa) fields. 
The purpose is to find a quantitative relation between the strong interac- 
tion coupling constant (g2/hc) and the constants of strong gravity Gy, Ay 
etc. In Section 2, we formulate the Lagrangian for the coupled system, 
namely, strong gravity and the Yukawa fields and derive the appropriate 
field equations. In Section 3 the field equations are written down for a 
conformally flat space-time. The coupled equations are then solved ap- 
proximately. It is possible to find a precise relation between the constants 
of the two fields. Numerical estimates show that g2/hc,~ 17, thus justifying 
the conjecture that the strong interaction constant is derivable from strong 
gravity. They are thus intimately related. Finally, we given a short discus- 
sion of the relation in Section 4. 

2. LAGRANGIAN AND FIELD EQUATIONS 

As shown in the previous paper (Usha and Sinha, 1979) we can 
neglect the effect of weak gravity since such effects appear in lowest order 
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of the quotient GN/Gf~IO -38. Accordingly, we are required to write 
down the action for the strong ( f )  gravity and the Yukawa field as 

I= f L d4x (1) 

where the Lagrangian has the form 

( - f ) l /2[  R ( f ) -2Ay  +cy(cp,,Tp,/ffat~-m~cp2)] (2) L= 2Kf 

Here R(f)  is the curvature scalar for f-gravity field, A f the "'cosmological" 
constant defined in Section 1, KI the coupling constant of strong gravity, 
Kj = 8~rG:/c 4, and f~  is the metric tensor of strong gravity. Here q0 is the 
scalar Yukawa field mediated by pions of mass m,~ (in units of inverse 
length) and cf is a constant (=  1/4~r). 

On carrying out variations with respect to f~  and q0 we get the 
following set of equations: 

R~,,(f)-�89 + A:f~.---K:c:[ep.,cp.,-l(~p.jp."-rn~ep2)f~,] (3) 

and 

~,~ +m2rp=0 f r (4) 

where a semicolon represents covariant differentiation. 
Equation (4) can also be recast in the form 

~Pl ~ + m2q)-- 0 (5) 

with 

(_f)l/2 

representing the covariant d'Alembertian. It may be noted that for flat 
space-time equation (5) takes the form 

m: =0 (7> 
dr 2 
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which has the well-known Yukawa solution 

rp(r) = ge-rn.r 
r (8) 

g being the strong coupling constant (or, in short, strong charge). One is 
required to solve the set of coupled nonlinear equations given in (3)-(5) to 
get a relationship between g, G/, A:, etc. 

As done in our previous papers, we choose a simple metric which was 
found adequate to demonstrate the form of strong gravity potential and its 
underlying interaction. This is the conformally flat space-time metric given 
by 

f~'P = e2X~/~tv (9) 

7/~ being the flat (Lorentz) metric, and ~ is a function of space coordinates 

f ~  =e  -2xn~ ~ (10) 

Introducing the Einstein-like tensor with the cosmological term, namely, 

E ~ _  i -R~,,, - IR~, + Ayf~, (11) 

equation (3) can be written in an equivalent form as 

= 1 a/~ m 2 2 e,, -r:c:[~,:,,-~,(~,o~,~,f - ,,~ )] (12) 

For the metric given in equation (9) the relevant Einstein like tensors E,,  
have the forms given below: 

Eoo = Roo - I Rfo o + Affoo 

= - 4 h ' / r -  2X" +h  '2 + A t e  -2x (13) 

(where a prime denotes differentiation with respect to r); similarly 

1 
Ell ~Rl l  -- -~Rfl 1 + Aj-fl 1 

x~ x, ~ 2,(17):(l+TJtr( 2x' ' +1) A:e2  
x~ 2x~ ~.  2x' x~ (l 7 7 } * - - ; -  + : -A~e-~ (15) 

2x 2 . 2X' 
E33 = 2 X " ( 1 - x 2  ) - ~ ' 2 ( l r 2  + - - - - ~ ) ' - t - 7 ( l + - ~ 2 ) - A f e - 2 X  (16) 

where Xl, x2, x 3 are the space coordinates. 
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Working out the right-hand side of the equation (12), we get the 
following four set of equations, namely, 

= ! t 2  1 m,,cp )] ( 1 7 )  Eoo - K s c : [ ( - ~ ( ~ )  +~e -2x 2 2 

El,  = - K f c y [  (r 1) 2-irpl ,2 _ i t l  -2Xm2q02 ] (18) 

' , 
- UP - ~e  m,~cp j (19 )  

E33 Kfcf[ 2 1 ~19t2 ' --2~ 2 2 ]  = -  (r - - i  - i e  m•rp j (20 )  

Assuming that the scalar field ep is time independent and adding the four 
equations (17)-(20), we get a convenient form of the field equation, 
namely, 

2X" + 4X ' / r -4X  '2 - 2 A l e  -2x = - K f c y ( - e - 2 X m 2 c p  2) (21) 

Similarly, working out the covariant d'Alembertian for the conformaUy flat 
metric, the explicit form of equation (5) turns out to be 

e 2x(cp, + 2r -- 2 X'rp') -- m2ep = 0 (22) 

which in the limit of flat space-time reduces to equation (7) having the 
Yukawa solution given by equation (8). 

3. SOLUTIONS OF EQUATIONS 

Before taking up the solution of the complete equation given in (21) 
and (22), it is expedient to first consider the uncoupled situation. In the 
absence of the Yukawa source the strong gravity field equation for confor- 
many flat space-time has the form 

2~" + 4 A ' / r -  4X '2 - 2 A l e  -2x =0 (23) 

[cf. equation (21), where the right-hand side is put equal to zero]. On 
making the substitution 

F = re - z x (24) 

the above equation reduces to 

F" + 2 A I F 2 / r  = 0 (25) 
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which is still nonlinear. Now in the absence of the cosmological term Af 
the above reduces to 

F" =0 (26) 

This has the general solution 

F= ar + b (27) 

where a and b are constants. We choose a = 1, giving 

e -2x = 1 + b / r  (28) 

Thus in the asymptotic limit r--->oo, e-2X--->l, giving the correct flat 
space-time limit. Thus, for large r, e-2x--->l and F-->r. Taking this limiting 
behavior for F in the nonlinear part of equation (25), we get 

F" = - 2 A i r  (29) 

which has a solution 

F= r -  A/r3~3 + b (30) 

or 

e -2~. = 1 + b / r - A f r 2 / 3  (31) 

and with b/r--- - 2 G y M / c 2 r ,  is like the Schwarzschild solution. The addi- 
tional term Ayr2/3, is similar to the de Sitter form that occurs in other 
spherically symmetric solutions for nonzero cosmological terms (Adler, 
Bazin, and Schiffer, 1965). 

As a first approximation, we attempt to get a relation between g, Gy, 
and Ay of equation (21) by using the solution given by equations (30) and 
(31), and the Yukawa solution. In the present context, space-time is taken 
to be flat beyond the range of strong gravity which is of the order of 10 - 14 
cm. Equation (21) takes the form (with cf -- 1/4~r), 

F 2 K f  F 2 e-2m.r  
F " = - 2 A f  r 41r r m2g2 r 2 

Kf 2 2e-2m'r (32) 
- 2 A / r -  --~--~ g m ,, r 

where in all the nonlinear terms on the fight-hand side we put the 
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asymptotic (flat space-time) limit F---~r, e-2x----~l. The solution of equation 
(32) is then obtained by expanding the exponential and integrating. With a 
suitable choice of constants of integration, we get 

2G:Mp Afr 3 2G:g2m2 t 1 ) 
F=r c2 3 c4 ~rlnr-m,:2 +-f-~m ~ (33) 

where Mp is a typical hadron mass (e.g., proton). This in turn gives 

2GzMp Afr 2 2G.g 2 [ ) 
e-2X =1 -~4 m2| lnr-m~r+ 1 c2r 3 c ~ ~ (34) 

Although the last term is obtained by an approximation method (Migdal, 
1977), it gives the right answer, in the sense that the f given by equation 
(33) is a solution of equation (32) within the approximate re#me consid- 
ered. The gravitational potential is given by (Adler, Bazin, and Schiffer, 
1965) 

C 2 C 2 
V= -~ (foo - 1) = -~-(e -2x _ I) (35) 

We now use the ansatz that for stable elementary particles, (e.g., proton) 
the strong gravitational force is zero at the radius of the stable hadron 
(Ross, 1972; Perng 1978), i.e., 

thus we get 

2GfMp 2Afr v Gfg2m,~ e-2m:p 
: r :  3 + c 4 r" = 0  (36) 

From this relation the dimensionless strong coupling constant  g2/hC is 
easily obtained as 

g2 exp(2m,~rp)c3rp2Aff2 2G:Mp] 
li-~-- m=G:h 3 -~rp J (37) 
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Using the numerical values of various quantities, namely, 

and 
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A f ~ 1028 cm -2, Gf ~ 6 . 6  • 1030 (C.G.S. units) 

M~ (proton)-- 1.67 • 10-24 g, c ffi 2.998 • 10 l~ cm/sec  

m,~( = m,~c/h) -- 0.68 x 1013 cm-  l, h = 1.05 • 10 -27 erg sec 

rp =2 .00x  10 -14 cm, exp(2m~r~)~ 1 

[The value of ~, is of the same order as the proton Compton length and its 
Schwarzschild radius for strong gravity.] We get 

g 2 / h C  ~- 17 

This compares very favorably with the observed value 14.50. 

4. CONCLUDING REMARKS 

In the foregoing sections, we have presented a calculation for strong 
gravity coupled to Yukawa field. The purpose was to get a relationship 
between the strong (nuclear) interaction coupling constant (g2/hc) and the 
parameters of the strong gravity field, namely, A:, Gf, etc. Einstein-type 
equations were used for strong gravity as suggested in some of our earlier 
work. We have chosen a conformally flat space-time for the strong gravity 
calculation, so that there is only one potential (effectively the equation for 
?,) unlike the ten of Einstein's weak gravity. As the strong gravity (strictly 
strong spin-2 interaction) is relevant to hadron physics, we did not wish to 
enter into complicated calculation at this stage of the development of the 
field. However, it should be noted that the solution obtained has all the 
essential elements, i.e., Schwarzschild, de Sitter, and the right form of 
the strong charge solution. Further, we obtain the value g2/hc~ 17, which 
is indeed encouraging and justifies the premises. 
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